

Figure 5. Total pressures represented by the open triangles (using the ordinate scale on the right) developed at various temperatures above a mixture of 2.26×10^{-5} mol of AlCl₃ and 5.5×10^{-5} mol of NH₄Cl in a diaphragm gauge of volume 25.3 cm³. See text for discussion of regions A, B, and C. The open circles represent the same data in region B plotted (using the ordinate scale on the left) as the equilibrium constant for the reaction $NH_4^+(l) + Cl^-(l) \rightleftharpoons NH_3(g) + HCl(g)$.

 $X_{\rm NH_4} = X_{\rm AlCl_4} + X_{\rm Cl^-} = 1 - X_3$

These equations are sufficient to define the system. The mole fraction of the ammine derived for the liquid phase varied from 0.6 at 531°K to 0.2 at 570°K. An equilibrium constant for the vaporization of "NH4Cl" from the liquid phase can now be considered, i.e., reaction 4

$$\frac{K_4}{(RT/V)^2} = \frac{n_{\rm HCl(g)}n_{\rm NH_3(g)}}{X_{\rm NH_4} + X_{\rm Cl^-}}$$

log K4 values so derived are plotted vs. 1/T in Figure 5. The least-squares line leads to a ΔH° value of 34.3 ± 1.0 kcal mol⁻¹ and ΔS° of 53.3 ± 1.3 cal mol⁻¹ deg⁻¹.

No direct study of the vaporization equilibrium for pure liquid NH4Cl has been found for comparison. The melting point under pressure is reported to be 793°K.⁴ If the present results are combined with sublimation data, without correction for temperature or pressure differences, values for fusion of 5.3 ± 1.0 kcal mol⁻¹ and 8.6 ± 1.3 cal deg⁻¹ mol⁻¹ are derived. The latter predict a melting point of 609°K; however, the uncertainties are large and values can be varied within the range indicated so as to yield the reported melting point.

One expects that use of the mole fraction in the treatment described will tend to underestimate the entropy of the mixture. In the dilute solution range (calculted Cl⁻ mole fractions range between 0.05 and 0.4) chloride ions were assumed to mix ideally with AlCl4- ions, which are substantially larger. Because of the different ionic volumes the effective partial molar entropy of Cl⁻ in such a solution should be larger than it is in pure liquid NH4Cl. A simple free volume ratio of 4 would provide a correction of 2.7 cal mol^{-1} deg⁻¹ which overcorrects the entropy in the direction of predicting the correct melting point. An attempt to treat the data using volume fractions led to an intractable equation (seventh power) and results were apparently not sufficiently precise to give a meaningful solution. The simple solution model seems, however, to give a surprisingly good basis for correlating the vapor pressures generated by this mixture.

Acknowledgment. This work was carried out with financial assistance from the national Science Foundation, Grant 37033X, which is acknowledged with thanks.

Registry No. NH4AlCl4, 7784-14-7; AlCl3, 7446-70-0; NH4Cl, 12125-02-9; NH3AlCl3, 15550-69-3.

References and Notes

- (1) E. Baud, Ann. Chim. Phys. 1, No. 8, 8 (1904).
- (2) K. N. Semeneko, W. N. Surov, and H. S. Kedrova, Russ. J. Inorg. Chem., 14, 481 (1969).
- Y. Yamaguti and S. Sisido, J. Chem. Soc. Jpn., 62, 304 (1941).
- (4) D. R. Stull and H. Prophet, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 37 (1971)
- (5) I. S. Morozov and D. Ya. Toptygin, Zh. Neorg. Khim., 3, 1937 (1958).
- (6) L. Y. Sob, Russ. J. Inorg. Chem., 5, 1353 (1960).
 (7) A. V. Suvarov and V. L. Shybaev, Probl. Sovrem. Khim. Koord. Soedin.,
- No. 2, 76 (1968).
 (8) H. L. Friedman and H. Taube, J. Am. Chem. Soc., 72, 2236 (1950).
 (9) R. R. Richards and N. W. Gregory, J. Phys. Chem., 68, 3089 (1964).
 (10) R. R. Richards, Doctoral Dissertation, University of Washington, Seattle, Wash. 98195 (1964).
 W. C. Laughlin and N. W. Gregory, J. Chem. Eng. Data, 20, 137 (1975).
- (11)
- W. C. Laughlin, Doctoral Dissertation, University of Washington, Seattle, (12)Wash. 98195 (1974).

Contribution from the Department of Chemistry, University of Wyoming, Laramie, Wyoming 82081

Electronic Structure and Optical Properties of Manganese(V) Oxytrichloride, MnOCl₃

JERRY P. JASINSKI* and SMITH L. HOLT

Received September 25, 1974

AIC40675P

The electronic absorption spectrum of manganese(V) oxytrichloride, MnOCl₃, in the gas phase has been measured in the energy region from 12,000 to 52,000 cm⁻¹. The ground-state molecular orbital energy levels and transition-state energies have been calculated by the SCF-X α scattered-wave method. Good agreement between the observed bands in the optical spectrum and the excitations from the transition-state $X\alpha$ calculation is observed.

Introduction

A number of studies of the electronic structures of tetrahedral oxy anions containing $Mn(V)^{1-11}$ have been made. The most successful of these have centered around the polarized optical spectrum of MnO4³⁻ doped into various crystalline tetrahedral hosts. Polarized optical spectra have helped to provide information which allows for a theoretical interpretation of the electronic structure of these systems.

Little is known, however, about the electronic structure of

* Associated Western Universities Predoctoral Fellow at the Los Alamos Scientific Laboratory. Address correspondence to this author at the Department of Chemistry, University of Virginia, Charlottesville, Va. 22901.

the symmetry-reduced oxyhalide analogs of the hypomanganate ion. In an effort to provide an explanation of the electronic structure of these analogs, we wish to report for the first time the optical absorption spectrum of manganese oxide trichloride, MnOCl₃, in the gas phase.

Calculational Method

In the past few years the SCF-X α scattered-wave method has been used to describe the electronic structure of many systems, generally with good results. We have applied this method recently to CrO_2X_2 (X = F, Cl),¹² MnO₃X (X = F, Cl),¹³ and MnO₂Cl₂¹⁴ in an effort to explain the electronic

Centers	A _i	A2	E
Outer	s p_z $d_{(3z^2-r^2)}$ $f_z(sz^2-r^2)$	$f_{y(3x^2-y^2)}$	$p_x d_{xz} d_{(x^2-y^2)} f_x(sz^2-r^2)$
Manganese	$f_{x}(x^{2}-3y^{2})$ s p_{z} $d_{(3z^{2}-r^{2})}$ $f_{z}(sz^{2}-r^{2})$ $f_{x}(x^{2}-3y^{2})$	$f_{y(3x^2-y^2)}$	$ \begin{array}{c} f_{z}(x^{2}-y^{2}) \\ p_{x} \\ d_{xz} \\ d_{(x^{2}-y^{2})} \\ f_{x}(sz^{2}-r^{2}) \\ f_{z}(x^{2}-y^{2}) \end{array} $
Oxygen	² x(x ² -3y ²) S		p_x
Chlorine	$\begin{array}{l} p_z \\ (1/\sqrt{3})_{s}(Cl1) + (1/\sqrt{3})_{s}(Cl2) + \\ (1/\sqrt{3})_{s}(Cl3) \\ (1/\sqrt{3})_{p_z}(Cl1) + (1/\sqrt{3})_{p_z}(Cl2) - \\ (1/\sqrt{3})_{p_z}(Cl3) \\ (1/\sqrt{3})_{p_x}(Cl1) - (1/2\sqrt{3})_{p_x}(Cl2) \\ (1/2)_{p_y}(Cl2) - (1/2\sqrt{3})_{p_x}(Cl3) \\ (1/2)_{p_y}(Cl2) \end{array}$		$\begin{array}{ll} -&(2/\sqrt{6})s(\mathrm{Cl1})-(1/\sqrt{6})s(\mathrm{Cl2})-\\&(1/\sqrt{6})s(\mathrm{Cl3})\\(2/\sqrt{6})p_z(\mathrm{Cl1})-(1/\sqrt{6})p_z(\mathrm{Cl2})-\\&(1/\sqrt{6})p_z(\mathrm{Cl3})\\(2/\sqrt{6})p_x(\mathrm{Cl1})+(1/2\sqrt{6})p_x(\mathrm{Cl2})-\\&(1/2\sqrt{2})p_y(\mathrm{Cl2})+(1/2\sqrt{6})p_x^-\\&(\mathrm{Cl3})+(1/2\sqrt{2})p_y(\mathrm{Cl3})\\(3/2\sqrt{2})p_x(\mathrm{Cl2})+(1/2\sqrt{2})p_y(\mathrm{Cl2})+\\&(\sqrt{3}/2\sqrt{2})p_x(\mathrm{Cl3})-(1/2\sqrt{2})p_y(\mathrm{Cl3})\end{array}$
		Mn ato SCF (a = 0.7 -0.0	
	Oxygen	-0.2	[40 80]∫[====]
	Å	<u>4s</u>	
	Mn		G
		-0.4 -0.4	160, 2p 13e 2p
×	Halogen y	- <u>0.8</u>	[12e] - ++- [15a] [20] [15a] [11e]
	gen H	-1.0	[8¢] [13a]
	hate system for a molecule with C_{3U}	-	

Table I. Basis Functions for MnO_3F and MnO_3Cl in the SCF-X α -SW Method: Normalized Symmetry Orbitals for Approximate Irreducible Representations

Figure 1. Coordinate system for a molecule with C_{30} symmetry. [Mn-O = 1.56 Å, Mn-Cl = 2.12 Å, and O-Mn-Cl = 100° 12' chosen by analogy to VOCl₃.^{19,20} Coordinates (au): Mn (0, 0, 0), O (0, 0, a), Cl1 (b, 0, -e), Cl2 (-d, c, -e), Cl3 (-d, -c, -e) where a = 2.9478458, b = 2.8056326, c = 3.2957745, d = 1.9028163, and e = 1.2512283.]

structure of molecules symmetry reduced from the parent $CrO4^{2-}$, $MnO4^{-}$, and $MnO4^{2-}$ ions, respectively. Our present application of the SCF-X α method is an attempt to relate the electronic structure of MnOCl₃ to the parent MnO4³⁻ ion. Our application of the method has been discussed in our earlier work,¹²⁻¹⁴ while a more exhaustive treatment may be obtained in ref 15-18.

The structure of manganese oxide trichloride can be regarded as a low-symmetry perturbation of the MnO4³⁻ cluster. Since little is known about the structure of MnOCl₃, its symmetry was assumed to be $C_{3\nu}$; see Figure 1. The sphere radii, exchange parameters (α values), and coordinate system were chosen in a manner similar to that for CrO₂Cl₂¹² and MnO4⁻¹⁵ (cf. Figures 1 and 2). The oxygen radius was identical with that used by Johnson¹⁵ ($r_0 = 2.3552501$ au). The Mn–O distance then uniquely determines the manganese radius (using touching spheres) and the Mn–Cl distance determines the chlorine radius. The sum of the Mn–Cl internuclear distance and the chlorine radius then determines Figure 2. SCF-X α -SW electronic "noncore" ground-state energy levels (in rydbergs) for a MnOCl₃ molecule in the gas phase. The energies are labeled according to the various irreducible representations of a C_{3U} symmetry group and are grouped according to a tetrahedral format. The highest fully occupied set of levels in the ground state is $2a_2^2$, 11e⁴. The 12e² orbital is half-occupied while all other orbitals above the dashed line are unoccupied. Also shown are the corresponding SCF-X α energy levels of the free atoms. [Sphere radii (au): outer sphere, 6.95390; Mn, 1.68935; Cl, 2.74755; O, 1.25850. α values: outer sphere, 0.72485; inner sphere, 0.72485.]

the extramolecular (outer) sphere radius. The α values within the atomic spheres were taken from those for the free atoms tabulated by Schwarz.²¹ For the inner-sphere region α was taken as a weighted sum (1 part of Mn, 1 part of O, and 3 parts of Cl) of Schwarz's values listed for these atoms. For the outer-sphere region α was taken as 1 part of oxygen and 3 parts of chlorine. The basis set (LCAO form) for the symmetry-correct orbitals from which the appropriate molecular orbitals are formed is given in Table I. These have been formed with reference to a set of local coordinate systems each of which is parallel to the coordinate system in Figure 1.

The ground-state molecular orbital eigenvalues resulting

Table II.	SCF-Xa-SW	Electronic Energ	y Levels ((in Rydbergs)
for a Mn(OCl ₃ Molecule	in the Gas Phase	a	

Symmetry	Occupancy	MO eigenvalues
14e	0	-0.1363
18a ₁	0	-0.1382
17a,	0	-0.2200
16a,	0	-0.5325
13e ⁻	0	-0.6472
12e	2	-0.7323
····		
2a ₂	2	-0.8509
11e	4	-0.8530
15a,	2	-0.8873
10e [^]	2 4 2 4	-0.8923
14a,	2	-0.9073
9e [°]	4	-0.9515
8e	4	-0.9829
13a ₁	2	-1.0572
7e (Cl 3s)	2 4 2 2 4 2 2 4	-1.7389 (-1.4675)
12a, (Cl 3s)	2	-1.7483 (-1.4675)
$11a_1 (O 2s)$	2	-2.0149 (-1.7305)
$6e (Mn 3p_x, 3p_y)$	4	-4.3857 (-3.9521)
10a ₁ (Mn 3p _z)	2	-4.3916 (-3.9521)
9a, (Mn 3s)	2	-6.5611 (-6.1260)
$5e(Cl 2p_x, 2p_y)$	4	-14.3684 (-14.1610)
4e (Cl $2p_x, 2p_y$)	4	-14.3684 (-14.1610)
$1a_2 (Cl 2p_x, 2p_y)$	4 2 2 6	-14.3684 (-14.1610)
$8a_1$ (Cl $2p_x, 2p_y$)	2	-14.3684 (-14.1610)
$7a_1 (Cl 2p_z)$	6	-14.3684 (-14.1610)
3e (Cl 2s)	4 2 4 2 2 4	-18.6638 (-18.4544)
6a ₁ (Cl 2s)	2	-18.6638 (-18.4544)
$5a_1 (O 1s)$	2	-37.7021 (-37.8192)
$2e (Mn 2p_x, 2p_y)$	4	-46.4417 (-46.2746)
$4a_1 (\operatorname{Mn} 2p_z)$	2	-46.4417 (-46.2746)
3a ₁ (Mn 2s)	2	-54.0284 (-53.8596)
1e (Cl 1s)	4	-201.5510 (-201.3576)
$2a_1$ (Cl 1s)	2	-201.5510 (-201.3576)
1a ₁ (Mn 1s)	2	-468.3930 (-468.2048)
	Total 84	

^a Levels below the dashed line are fully occupied in the ground state; those above the line are empty (12e is half-filled). Corresponding "free-atom" energy levels are shown in parentheses.

from the SCF-X α calculation are listed in Table II. The core levels (Mn 1s, 2s, 2p; O 1s; Cl 1s, 2s, 2p) were included in the SCF-X α calculation. However, only one symmetry orbital was used in the expansion of the molecular orbitals for these states. In Figure 2, we have plotted the eigenvalues for the "noncore" molecular orbitals along with the "noncore" levels of the free atoms (determined from SCF-X α atomic calculations). The X α ground-state eigenvalues for MnOCl₃ are plotted in Figure 3 together with the $X\alpha$ eigenvalues for MnO₄-15 and MnO₃Cl in order to provide a comparison of related species. It is evident at this point that the ground-state eigenvalues for MnOCl3 like those of MnO3Cl have fallen into groups which allow one to identify each group by its parent tetrahedral partner. However, further comparison between the ground states of these two symmetry-related molecules is limited. The availability of p orbitals for the three chlorine atoms in MnOCl₃ gives rise to a set of normalized molecular orbitals (cf. Table I) different from the LCAO basis functions derived for the MnO₃Cl molecule.¹³ One would expect, therefore, differences to occur in the charge density distribution for the ground state as well as differences in calculated transition-state energies.

The manganese in MnOCl₃ formally has a d² central metal configuration. The ground-state SCF-X α calculation (cf. Figure 2) shows that the last two electrons making up this configuration are located in an orbital of e symmetry (12e). The ³A₂(t1⁶e²) ground state for MnOCl₃ correlates directly with that for the tetrahedral parent, MnO4^{3-10,11} However, the degeneracy of all orbitals of t (or states of *T*) symmetry will be reduced. Consequently, when one considers a one-

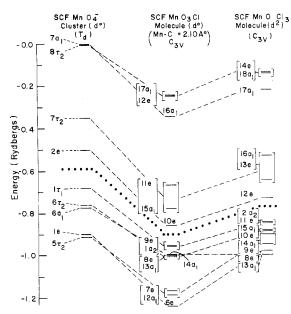


Figure 3. Comparison of the theoretical valence ground-state molecular eigenvalues of MnO_3Cl and $MnOCl_3$ in C_{3U} symmetry with the ground-state molecular eigenvalues of the SCF MnO_4^{-1} cluster¹⁵ in T_d symmetry. Orbitals below the dotted line are fully occupied while those above the line are unoccupied (12e² is half-occupied).

Table III. Transition State Energies for the Various Orbital Transitions in MnOCl₃ Grouped into a Tetrahedral Format Using the Non-Spin-Polarized Option in the SCF-X α -SW Method

Orbital tra	Orbital transitions				
T _d	C _{3U}	Ene	rgy, cm⁻¹		
Ligand Field					
$2e \rightarrow 3t_2$	$12e \rightarrow 13e$		9,450		
-	$12e \rightarrow 16a_1$		21,860		
		Av	15,650		
	Charge Transfer				
$t_1 \rightarrow 2e$	$2a_2 \rightarrow 12e$		16,300		
	$11e \rightarrow 12e$		15,570		
		Av	15,930		
$6t_2 \rightarrow 2e$	$15a_1 \rightarrow 12e$		19,870		
	$10e \rightarrow 12e$		20,160		
54 2-	14 10-	Av	20,020		
$5t_2 \rightarrow 2e$	$14a_1 \rightarrow 12e$		21,940		
	$9e \rightarrow 12e$		24,910		
		Av			
$1e \rightarrow 2e$	$8e \rightarrow 12e$		27,860		
$6a_1 \rightarrow 2e$	$13a_1 \rightarrow 12e$		36,800		
$1t_1 \rightarrow 7t_2$	$11e \rightarrow 13e$		24,120		
101 702	$2e_2 \rightarrow 13e$		24,670		
	202 130	Av			
	11- 16-				
	$11e \rightarrow 16a_1$		36,960		
	$2a_2 \rightarrow 16a_1$	A	37,880		
		Av	37,420		
		Total av	30,910		
$6t_2 \rightarrow 7t_2$	$10e \rightarrow 13e$		28,610		
	$15a_1 \rightarrow 13e$		28,330		
		Av	28,470		
	$10e \rightarrow 16a_1$		41,580		
	$15a_1 \rightarrow 16a_1$		41,420		
		Av	41,500		
		Total av	34,980		
$5t_2 \rightarrow 7t_2$	$14a_1 \rightarrow 13e$		30,850		
	$9e \rightarrow 13e$		33,820		
		Av	32,330		
	$14a_1 \rightarrow 16a_1$		44,300		
	$9e \rightarrow 16a_1$		46,960		
	20 · 1001	Av	45,630		
		Total av			
		i Utai dV	50,700		

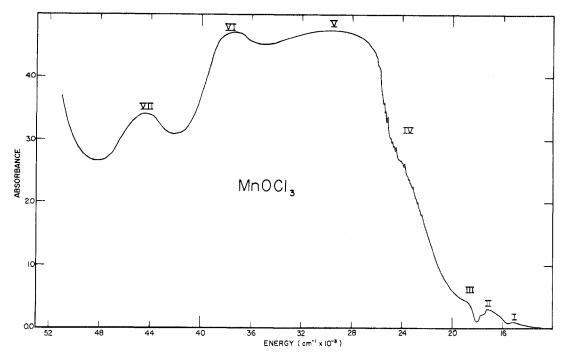


Figure 4. Gas-phase electronic absorption spectrum of MnOCl₃ in the region 12,000-52,000 cm⁻¹.

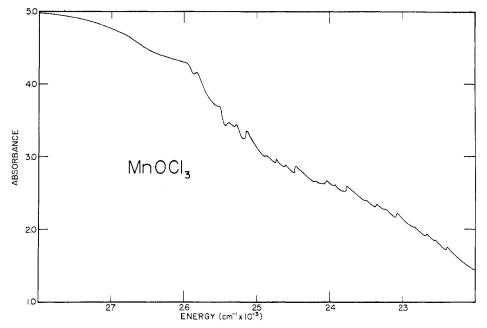


Figure 5. Vibrational structure in the 22,000-26,000-cm⁻¹ region of the spectrum of MnOCl_a.

electron transfer from one of the "noncore" occupied (t) ground-state orbitals to the half-occupied (12e) or unoccupied (13e or 16a₁) orbitals, the number of excited states possible is greater in $C_{3\nu}$ symmetry than in the parent T_d symmetry. As a consequence of the selection rules for $C_{3\nu}$ symmetry, any ${}^{3}A_{2}$, ${}^{3}E \leftarrow {}^{3}A_{2}$ transitions are electric dipole allowed while any ${}^{3}A_{1} \leftarrow {}^{3}A_{2}$ transition is forbidden.

The X α scattered-wave method does not give the total energy of a true many-electron state. Instead, it yields the energy center of gravity of the multiplet structure generated by the orbital excited configuration. The symmetry of MnOCl₃ is such that this center of gravity is not of an orbitally nondegenerate type. If we consider excitations that correspond to a t₁ \rightarrow 2e transition in the parent tetrahedral molecule, we must then consider e \rightarrow e and a₂ \rightarrow e promotions in the $C_{3\nu}$ case. While the a₂ \rightarrow e excitation presents no problem, the e \rightarrow e excitation produces the center of gravity of a triplet and singlet A₁, A₂, and E. The $X\alpha$ -SW method in its present form cannot resolve this grouping of states for this symmetry.

However, as in our previous work,^{13,14} we have determined the energy differences between the ground-state and various excited-state configurations by the non-spin-polarized transition-state calculation.¹⁷ Thus, while we cannot separate out the excited states as completely as in our earlier work,¹² our calculation for these excitations (cf. Table III) is of considerable value in the interpretation of the electronic absorption spectrum of MnOCl₃.

Experimental Section

Manganese oxide trichloride was prepared by the method of Briggs.²² Purification was achieved using techniques previously reported.^{13,14} The optical spectrum was obtained with a resolution of $\sim 10 \text{ cm}^{-1}$. Maintenance of the gas at $0 \rightarrow 5^{\circ}$ during the optical measurement was necessary in order to prevent decomposition of the MnOCl₃.

Table IV. Assignments for MnOCl₃

Obsd				
	Calcd	State transition C_{3v}	T_d	C _{3U}
15,000	9,450	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} \stackrel{z}{\leftarrow} {}^{3}A_{2} \\ {}^{1}E, {}^{3}E \stackrel{xy}{\leftarrow} {}^{3}A_{2} \end{bmatrix}$	$2e \rightarrow 7t_2$	$12e \rightarrow 13e$
17,500	16,300	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$t_1 \rightarrow 2e$	$2a_2 \rightarrow 12e$
(17,000)	15, 570	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} \xleftarrow{z} {}^{3}A_{2} \\ {}^{1}E, {}^{3}E \xleftarrow{xy} {}^{3}A_{2} \end{bmatrix}$		11e → 12e
19,000	19,870	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$6t_2 \rightarrow 2e$	$15a_1 \rightarrow 12e$
	20,160	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} \stackrel{z}{\leftarrow} {}^{3}A_{2} \\ {}^{1}E, {}^{3}E \stackrel{xy}{\leftarrow} {}^{3}A_{2} \end{bmatrix}$		10e → 12e
	21,860	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$2e \rightarrow 7t_2$	$12e \rightarrow 16a_1$
	21,940	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$5t_2 \rightarrow 2e$	$14a_1 \rightarrow 12e$
24,000	24,9 10	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} \stackrel{z}{\leftarrow} {}^{3}A_{2} \\ {}^{1}E, {}^{3}E \stackrel{xy}{\leftarrow} {}^{3}A_{2} \end{bmatrix}$	$5t_2 \rightarrow 2e$	9e → 12e
	24,670	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$1t_1 \rightarrow 7t_2$	$2a_2 \rightarrow 13e$
	24,120	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} \stackrel{z}{\leftarrow} {}^{3}A_{2} \\ {}^{1}E, {}^{3}E \stackrel{xy}{\leftarrow} {}^{3}A_{2} \end{bmatrix}$		11e → 13e
28,000-37,000	27,860	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} \stackrel{z}{\leftarrow} {}^{3}A_{2} \\ {}^{1}E, {}^{3}E \stackrel{xy}{\leftarrow} {}^{3}A_{2} \end{bmatrix}$	$1e \rightarrow 2e$	8e → 12e
	28,330	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$6t_2 \rightarrow 7t_2$	$15a_1 \rightarrow 13e$
	28,610	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} ^{3}A_{2} \\ {}^{1}E, {}^{3}E ^{xy} {}^{3}A_{2} \end{bmatrix}$		10e → 13e
	30,850	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$5t_2 \rightarrow 7t_2$	$14a_1 \rightarrow 13e$
	33,820	$\begin{bmatrix} {}^{1}A_{2}, {}^{3}A_{2} ^{3}A_{2} \\ {}^{1}E, {}^{3}E ^{xy} {}^{3}A_{2} \end{bmatrix}$		9e → 13e
38,000	36,800	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$6a_1 \rightarrow 2e$	$13a_1 \rightarrow 12e$
	36,960	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$1t_1 \rightarrow 7t_2$	$11e \rightarrow 16a_1$
	37,880	$^{1}A_{2}, ^{3}A_{2} \xleftarrow{z} ^{3}A_{3}$		$2a_2 \rightarrow 16a_1$
	41,580	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$6t_2 \rightarrow 7t_2$	$10e \rightarrow 16a_1$
45,000	46,960	¹ E, ³ E $\stackrel{xy}{\leftarrow}$ ³ A ₂	$5t_2 \rightarrow 7t_2$	$9e \rightarrow 16a_1$
		17,500 16,300 (17,000) 15,570 19,000 19,870 20,160 21,860 21,940 24,910 24,000 24,670 24,120 24,670 28,000-37,000 27,860 28,000 30,850 30,850 33,820 38,000 36,800 37,880 41,580	$\begin{bmatrix} 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 17,500 16,300 16,300 1E, $3 \in \frac{X \times 3}{4} A_{2}$ (17,000) 15,570 $\begin{bmatrix} 1 \cdot A_{2}, 3 \cdot A_{2} \stackrel{x}{\leftarrow} 3 \cdot A_{2} \\ 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 19,000 19,870 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 20,160 $\begin{bmatrix} 1 \cdot A_{2}, 3 \cdot A_{2} \stackrel{x}{\leftarrow} 3 \cdot A_{2} \\ 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 21,860 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 21,940 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 24,000 24,910 $\begin{bmatrix} 1 \cdot A_{2}, 3 \cdot A_{2} \stackrel{x}{\leftarrow} 3 \cdot A_{2} \\ 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 24,670 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 24,120 $\begin{bmatrix} 1 \cdot A_{2}, 3 \cdot A_{2} \stackrel{x}{\leftarrow} 3 \cdot A_{2} \\ 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 28,000-37,000 27,860 $\begin{bmatrix} 1 \cdot A_{2}, 3 \cdot A_{2} \stackrel{x}{\leftarrow} 3 \cdot A_{2} \\ 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 28,330 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 30,850 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 30,850 1E, $3 \in \frac{X \times 3}{4} A_{2}$ 33,820 $\begin{bmatrix} 1 \cdot A_{2}, 3 \cdot A_{2} \stackrel{x}{\leftarrow} 3 \cdot A_{2} \\ 1 \cdot E, 3 \in \frac{X \times 3}{4} A_{2} \end{bmatrix}$ 38,000 36,800 1E, $3 \in \frac{X \times 3}{4} A_{2} \stackrel{x}{\leftarrow} 3 A_{2}$ 37,880 1E, $3 \in \frac{X \times 3}{4} A_{2} \stackrel{x}{\leftarrow} 3 A_{3}$ 41,580 1E, $3 \in \frac{X \times 3}{4} A_{2}$	$\begin{bmatrix} i \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2} \mathbf{s} \mathbf{A}_{2} \end{bmatrix}$ 17,500 16,300 1E, $\mathbf{s} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2} \mathbf{s} \mathbf{A}_{2}$ t ₁ $\rightarrow 2\mathbf{e}$ (17,000) 15,570 $\begin{bmatrix} i \mathbf{A}_{2}, \mathbf{s}_{4}, \mathbf{z}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 19,000 19,870 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4}$ (t ₁ , $\mathbf{s}, \mathbf{s}, \mathbf{z}, \mathbf{z}, \mathbf{s}_{4}$) 20,160 $\begin{bmatrix} i \mathbf{A}_{2}, \mathbf{s}_{4}, \mathbf{z}, \mathbf{z}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 21,860 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4}$ 21,940 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4}$ 24,000 24,910 $\begin{bmatrix} i \mathbf{A}_{2}, \mathbf{s}_{4}, \mathbf{z}, \mathbf{z}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 5t ₂ $\rightarrow 2\mathbf{e}$ 24,000 24,910 $\begin{bmatrix} i \mathbf{A}_{2}, \mathbf{s}_{4}, \mathbf{z}, \mathbf{z}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 1e $\rightarrow 2\mathbf{e}$ 24,670 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 1e $\rightarrow 2\mathbf{e}$ 28,000–37,000 27,860 $\begin{bmatrix} i \mathbf{A}_{2}, \mathbf{s}_{4}, \mathbf{z}, \mathbf{z}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 1e $\rightarrow 2\mathbf{e}$ 28,000–37,000 27,860 $\begin{bmatrix} i \mathbf{A}_{2}, \mathbf{s}_{4}, \mathbf{z}, \mathbf{z}, \mathbf{s}_{4}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 30,850 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 38,000 36,800 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 38,000 36,800 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \\ \mathbf{i} \mathbf{E}, \mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 41,580 1E, $\mathbf{s} \mathbf{E}, \mathbf{x}^{2}, \mathbf{s}_{4} \end{bmatrix}$ 45, 2 $\mathbf{s}, \mathbf{s}_{4} = \mathbf{s}, \mathbf{s}, \mathbf{s}_{4} = \mathbf{s}, \mathbf{s}, \mathbf{s}_{4} = \mathbf{s}, \mathbf{s}$

The electronic absorption spectrum of MnOCl₃ at approximately 5° is shown in Figures 4 and 5. This spectrum is seen to consist of seven separate areas of absorption: (1) a weak structureless band (I) centered at $\sim 15,200$ cm⁻¹, (2) a more intense band (II), centered at $\sim 17,200$ cm⁻¹, with a less intense shoulder on the high-energy side at $\sim 18,000$ cm⁻¹, (3) a slightly more intense, broad band (III) centered at \sim 19,000 cm⁻¹, (4) an intense, broad, structured shoulder centered at \sim 24,000 cm⁻¹ (band IV), (5) an extremely intense, broad band (V) between \sim 26,000 and \sim 35,000 cm⁻¹, (6) an intense broad band (VI) centered at \sim 38,000 cm⁻¹, and (7) a broad band (VII) with approximately three-fourths of the intensity of bands V and VI centered at \sim 44,000 cm⁻¹. The intensity ratio of bands I-VII in order of increasing energy is approximately 0.10:0.25:0.35:2.75:4.75:4.75:3.50.

d spectrum could not be obtained from this experiment.

The line shape of band V does not resemble that of a gaussian curve. However, its reproducibility via several measurements leads us to believe in its authenticity. Therefore, one can only suggest from the electronic assignments discussed later that this apparent distortion may be caused by the extensive overlap of excited states in this region.

Discussion

Electronic Assignment. A comparison of the $X\alpha$ ground-state molecular orbitals of the d⁰ MnO₄⁻ cluster vs. the d⁰ MnO₃Cl and d¹ MnO₂Cl₂ molecules^{13,14} and with those of the d² MnOCl₃ molecule (cf. Figure 3) strongly suggests that many of the optical properties of the MnO₄x- (x = 1-3) ions can be understood in terms of their halide-substituted, symmetry-reduced daughter species. It also agrees with the suggestion of Orgel²³ that the electronic structure of the various $MnO_{4^{-}}$ ions can be understood in terms of the structure of the $MnO_{4^{-}}$ ion.^{24,25}

The assignments of bands I-VII based upon our SCF- $X\alpha$ -SW calculation are given in Table IV. Band I is assigned to the $12e \rightarrow 13e$ component of the parent $2e \rightarrow 7t_2$ ligand field excitation giving rise to two electric dipole allowed transitions, ${}^{3}A_{2}$, ${}^{3}E \leftarrow {}^{3}A_{2}$, and two spin-forbidden transitions, ${}^{1}A_{2}$, ${}^{1}E \leftarrow {}^{3}A_{2}$. The other ligand field component, $12e \rightarrow 16a_{1}$, giving rise to the ¹E, ³E \leftarrow ³A₂ transitions appears to be buried within the manifold of band III. The spin-forbidden singlet states are included in the assignments in Table IV as the singlet-triplet splitting could not be determined in our calculation and insufficient structure is present in this manifold to allow us experimentally to identify the various spin-allowed and spin-forbidden components. The singlet-triplet splitting for the d⁰ MnO₃Cl molecule was \sim 2200 cm⁻¹ in this region.¹³ Assuming the same order of magnitude triplet-singlet splitting in MnOCl₃, the singlets appear to be buried beneath the dominant triplets in each of the seven bands in the optical spectrum.

Band II located at ~17,000 cm⁻¹ with a shoulder at ~17,500 cm⁻¹ is assigned to the ${}^{3}A_{2}$, ${}^{3}E \leftarrow {}^{3}A_{2}$ and ${}^{3}E \leftarrow {}^{3}A_{2}$ transitions from the 11e \rightarrow 12e and 2a₂ \rightarrow 12e excitations, respectively. These correlate with the t₁ \rightarrow 2e charge-transfer transition of the T_{d} parent. However, since the intensity of band II is only slightly greater than that of band I (0.25 vs. 0.10), the possibility of some d-d mixing in this region, as well as in band III, appears quite likely. This observation in bands I-III coincides with the assignments of Milstein et al.^{10,11} for the optical spectrum of MnO4³⁻.

In band III our SCF-X α calculation indicates an overlapping set of excited-state transitions arising from the 14a₁, 15a₁, 10e \rightarrow 12e excitations. These correlate with the 6t₂, 5t₂ \rightarrow 2e allowed charge-transfer excitations in the parent T_d molecule. Also included is the 12e \rightarrow 16a₁ component which correlates with the ligand field 2e \rightarrow 7t₂ excitation discussed earlier.

Based upon intensity considerations of the optical spectrum and our SCF-X α transition-state energies (cf. Table IV), the shoulder at ~24,000 cm⁻¹, band IV, the broad intense band (V) between ~28,000 and ~37,000 cm⁻¹, and the two intense bands centered at ~38,000 and ~45,000 cm⁻¹ are primarily charge transfer in origin. Whether or not all of the states indicated in Table IV are present in these regions is difficult to ascertain from our study. However, comparison of the intensities of band VII vs. bands V and VI with the calculated number of spin and electric dipole allowed transitions in these regions (1 vs. 8 and 4: Table IV) correlates quite well with the amount of charge transfer assigned to these bands.

Vibrational Assignment. Assignments of the observed excited-state frequencies for MnOCl₃ have been made using reported ground-state frequencies for VOCl₃^{19,20} [$\nu_1(a_1) = 1035 \text{ cm}^{-1}$; $\nu_2(a_1) = 408 \text{ cm}^{-1}$; $\nu_3(a_1) = 165$; $\nu_4(e) = 504 \text{ cm}^{-1}$; $\nu_5(e) = 249 \text{ cm}^{-1}$; $\nu_6(e) = 129 \text{ cm}^{-1}$] because the fundamental frequencies for manganese oxide trichloride have not yet been reported. Since MnOCl₃ is isostructural with VOCl₃ and since vanadium is only slightly more electronegative than manganese (1.6 vs. 1.5), one would expect the fundamental frequencies of MnOCl₃ to be near the values for VOCl₃.

The well-defined vibrational structure in the region from $\sim 22,300$ to $\sim 26,000$ cm⁻¹ (cf. Figure 5) consists of two electronic origins separated by 280 cm⁻¹ (cf. Table V). The first system with its origin at 22,396 cm⁻¹ contains five parent members uniformly spaced at ~ 683 cm⁻¹. Built upon each parent line is a weaker satellite line at an average of ~ 154 cm⁻¹ higher in energy. The second system with its origin at 22,676 cm⁻¹ consists of five parent members spaced at ~ 680

Table V. Vibrational Components in the 22,000-26,000-cm⁻¹ Region of the Spectrum of MnOCl₃

		3	
$\overline{\nu}$, cm ⁻¹	As	signment	$\Delta \overline{\nu}$, cm ⁻¹
22,396	1v ₀		
22,558	$1\nu_0$	$+ \nu_3$	152
22,676	$2\nu_0$	•	
22,847	$2\nu_0$	$+ \nu_3$	171
23,084	$1\nu_0$	$+ \nu_1^{-}$	689
23,250		$+\nu_{1} + \nu_{3}$	164
23,359	$2\nu_0$	$+ \nu_1$	683
23,513	$2\nu_{o}$	$+\nu_{1} + \nu_{3}$	154
23,770	$1\nu_0$	$+ 2\nu_1$	685
23,929	$1\nu_0$	$+ 2\nu_{1} + \nu_{3}$	159
24,044	$2\nu_0$	$+ 2\nu_1$	685
24,212	$2\nu_0$	$+ 2\nu_1 + \nu_3$	169
24,456		$+ 3\nu_1$	686
24,606	$1\nu_0$	$+ 3\nu_1 + \nu_3$	150
24,728		$+ 3\nu_1$	684
24,876	$2\nu_{0}$	$+ 3\nu_1 + \nu_3$	148
25,135		$+ 4\nu_1^2$	679
25,288	$1\nu_0$	$+4\nu_{1}+\nu_{3}$	153
25,394		$+ 4\nu_1^{-1}$	666
25,519		$+4\nu_{1} + \nu_{3}$	125
25,813		$+5v_{1}$	678
25,965	$1\nu_0$	$+5\nu_{1}+\nu_{3}$	152
	Av, cm ⁻¹		
	System I	System II	Total av, cm ⁻¹
ν_1	683	680	682
ν_3	155	153	154

Table VI. Distribution of Electronic Charge in the $MnOCl_a$ Molecule^{*a*}

Sym- metry	Mn sphere	O sphere	Cl sphere	Inter- atomic region	Extramolecu- lar region
14e	0.0009	0.0140	0.0507	0.6544	0.2801 p, d
18a ₁	0.0012	0.0059	0.0624	0.6465	0.2842 p
$17a_{1}$	0.0011	0.0075	0.0534	0.7150	0.2230 s
16a,	0.5238 <u>d</u>	0.2452 p	0.0759	0.1524	0.0027
13e	0.5012 d	0.07 99 p	0.3117 p	0.1136	0.0059
12e	0.5957 <u>d</u>	0.1165 p	0.1692 p	0.1170	0.0017
$2a_2$	0.0003	0.0000	0.9024 p	0.0932	0.0041
11e	0.0054	0.1 3 11 p	0.7417 p	0.1284	0.0034
15a ₁	0.0044	0.0345 p	0.8130 p	0.1444	0.0038
10e	0.0078	0.0 922 p	0.7380 p	0.1567	0.0055
14a,	0.0294	0.0442 p	0.8049 p	0.1106	0.0109
9e -	0.3282 <u>d</u>	0.0873 p	0.4527 p	0.1286	0.0032
8e	0.3770 d	0.1964 p	0.2751 p	0.1489	0.0027
13a,	0.3815 <u>d</u>	0.3951 p	0.0486 p	0.1742	0.0007
Total Electronic Charge ^b					
Mn sp			teratomic re		-4.4001
				-0.1124	
Cl.sphere -50.0406 Total charge -84.0001					

^a Contribution of each normalized valence orbital in the ground state to a unit of electronic charge in the various regions of the molecule $MnOCl_3$. The underlined accompanying symbol (s, p, d, or f) indicates the orbital type in which the majority of the charge density resides. The charges associated with each molecular orbital are weighted by the occupancy of that orbital. The contribution from the ligands are weighted by the number of atoms of each type. Orbitals below the dashed line are fully occupied. Those above the line are unoccupied (12e is half-occupied). ^b Obtained from the summing of charge densities in all occupied molecular orbitals (including core orbitals) in the ground state.

 cm^{-1} with a weaker satellite member built upon each parent at ~153 cm⁻¹ to higher energy.

The average frequencies 682 and 154 cm⁻¹ (cf. Table V) observed in band IV are assigned to the ν_1 and ν_3 modes, respectively. These represent reductions of ~34% (ν_1) and ~7% (ν_3) in the excited states.

The charge density distribution (Table VI) for the excitations assigned to this region (band IV) show the majority of charge to be located on the chlorine atoms in the ground-state 2a₂, 11e (t_1) and 14a₁, 9e $(6t_2)$ molecular orbitals. Therefore, the appearance of the ν_3 satellite mode is expected. However, the presence of the v_1 mode indicates a strong oxide character in either the 9e \rightarrow 12e component of the 5t₂ \rightarrow 2e excitation (T_d parentage) or the 2a₂, $11e \rightarrow 13e$ components of the $1t_1 \rightarrow$ $7t_2$ excitation (T_d parentage). This is unexpected considering the charge density distribution in the orbitals comprising these excitations (cf. Table VI). However, such behavior is observed for the $5t_2 \rightarrow 2e$ excitations in MnO₃Cl and MnO₂Cl₂. The $L \rightarrow M$ charge transfer assigned to this region is therefore a $p\pi \rightarrow d\pi^*$ (chlorine \rightarrow manganese) interaction with some $p\pi$ \rightarrow d π^* (chlorine \rightarrow oxygen or chlorine \rightarrow manganese) charge transfer also likely.

Acknowledgment. The authors wish to acknowledge the support of the National Science Foundation (Grants GP-15432A1 and GP-41506) and the Research Corp. Dr. John H. Wood is thanked for providing the SCF-X α -SW computer program used in our molecular orbital calculations.

Registry No. MnOCl₃, 23097-77-0.

References and Notes

(1) A. Carrington and M. C. R. Symons, J. Chem. Soc., 3373 (1956).

- (2) A. Carrington, D. J. Ingram, K. A. K. Lott, D. S. Schonland, and M. C. R. Symons, *J. Chem. Soc.*, 101 (1959).
 (3) A. Carrington and D. S. Schonland, *Mol. Phys.*, 3, 331 (1960).

- (4) P. D. Johnson, J. S. Prener, and J. D. Kingsley, *Science*, 141, 1179 (1963).
 (5) R. F. Fenske and C. C. Sweeney, *Inorg. Chem.*, 3, 1105 (1964).
 (6) J. D. Kingsley, J. S. Prener, and B. Segall, *Phys. Rev. [Sect.] A*, 137, 189 (1965).
- M. Greenblatt, E. Banks, and B. Post, Acta Crystallogr., 23, 166 (1967). (7)

- M. Greenolatt, E. Banks, and B. Post, Acta Crystallogr., 23, 166 (1967).
 B. Krebs, A. Müller and H. W. Roesky, Mol. Phys., 12, 469 (1967).
 D. K. Nath and F. A. Hummel, J. Am. Ceram. Soc., 52, 8 (1969).
 J. Milstein and S. L. Holt, Inorg. Chem., 8, 1021 (1969).
 J. B. Milstein, J. Ackerman, S. L. Holt, and B. R. McGarvey, Inorg. Chem., 11, 1178 (1972).
 L. D. Loignet, J. H. Wind, S. L. With, and S. K. McGarvey, Inorg.
- J. P. Jasinski, J. H. Wood, S. L. Holt, and L. B. Asprey, in press.
 J. P. Jasinski, J. H. Wood, S. L. Holt, and J. Moskowitz, in press.

- (14) J. P. Jasinski, J. H. Wood, S. L. Holt, and J. Woskowitz, in press.
 (14) J. P. Jasinski and S. L. Holt, in press.
 (15) K. H. Johnson and F. C. Smith, Jr., *Chem. Phys. Lett.*, **10**, 219 (1971).
 (16) K. H. Johnson, J. Chem. Phys., **45**, 3085 (1966); K. H. Johnson and F. C. Smith, Jr., *Phys. Rev. B*, **5**, 831 (1972); K. H. Johnson and F. C. Smith, Jr., *Chem. Phys. Lett.*, **7**, 541 (1970).
- Smith, Jr., Chem. Phys. Lett., 7, 541 (1970).
 J. C. Slater and K. H. Johnson, Phys. Rev. B, 5, 844 (1972).
 J. C. Slater, "Quantum Theory of Molecules and Solids", Vol. 4, McGraw-Hill, New York, N.Y., 1974.
 J. J. Eichoff and F. Weigel, Z. Anorg. Allg. Chem., 275, 267 (1954).
 F. A. Miller and L. R. Cousins, J. Chem. Phys., 26, 329 (1957).
 K. H. Schwarz, Phys. Rev. B, 5, 2466 (1972).
 S. Brigne, L. Inorg. Nucl. Chem. 30, 2866 (1968).

- (22) T. S. Briggs, J. Inorg. Nucl. Chem., 30, 2866 (1968).
 (23) L. E. Orgel, Mol. Phys., 7, 397 (1964).
- (24) M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952).
- (25) C. J. Ballhausen and A. D. Liehr, J. Mol. Spectrosc., 2, 342 (1958).

Contribution from Chemical Abstracts Service, The Ohio State University, Columbus, Ohio 43210

Stereochemical Notation in Coordination Chemistry. Mononuclear Complexes

MARY F. BROWN,¹ BILLY R. COOK, and THOMAS E. SLOAN*

Received September 9, 1974

A unified system of notation for geometric isomers, including central atom symmetry and optical isomers for mononuclear complexes, is presented for known geometries up to coordination number 6. This notation system makes extensive use of the complementary features of the Cahn, Ingold, and Prelog (CIP) system for tetrahedra, the IUPAC helical system for bis- and tris-chelated octahedra, and a proposal by Petrarca, Rush, and Brown using CIP priority ranking to describe stereoelements in a unified and general manner. This system has been introduced in the Indexes to Chemical Abstracts starting with Volume 76 (January-June 1972). Certain aspects of ligand stereochemistry and the notation for ferrocene complexes are discussed.

Introduction

The concept of the geometric arrangement of groups around a central atom or ion has been a central precept of coordination theory since its early development by Alfred Werner starting in 1893. The ideas of coordination number and the specific geometric arrangement of ligands (symmetry) are among the first encountered by the student of coordination chemistry. In a verbal discussion between coordination chemists, the terms "square planar", "octahedral", and "tetrahedral" are as often heard as "isomer", "molecule", or "ion". Formal nomenclature, however, has skirted the development of names or notations which give explicit designations to the symmetry of a complex. Thus, when the coordination chemist writes cis-diamminedichloroplatinum, previous chemical experience and logic imply that the compound has a square-planar configuration. The indirect implication of the configuration of a complex has not greatly hindered formal communication in coordination chemistry up to now because one type of symmetry predominated, except for coordination numbers 4 and 5. In these latter two instances experience in the area led to generalizations of the accepted symmetries in a specific system and the exceptions to the generalizations became well known. However, with the growth of coordination chemistry in the last three decades, the number of symmetries and notations proposed and used in formal communication has increased to match the growth in the field.

In the recent literature, various stereochemical notations

for coordination compounds have been suggested.²⁻¹¹ The most general systematic approach to stereochemical notation is the Cahn-Ingold-Prelog (CIP) standard sequence rule⁷ which has been used with great success for the several classes of chirality encountered in organic chemistry.

The standard sequence rule is the procedure in which the ligands are ranked in order of precedence, hereafter referred to as seniority, on the three-dimensional model of the molecule. The chiral element is given a symbol representing the handedness of the progression of the seniorities of the ligands. For the case of the nearly tetrahedral carbon center encountered frequently in organic chemistry, the molecule is viewed from the side opposite the least-senior (largest priority number) ligand and the symbols R (right-handed or clockwise) and S (left-handed or anticlockwise) are used to indicate the direction of the progression of the seniorities.

The seniorities are determined according to the subrules given in ref 7: (1) higher atomic number precedes lower; (2) higher atomic mass number precedes lower; (3) Z precedes E;¹² (4) like pair R,R or S,S precedes unlike R,S or S,R; ...; (5) R precedes S....

In the application of these subrules the ligands are arranged in order of decreasing atomic number. For the case of a tetracoordinate center with the ligands H, Cl, Br, and F, the ligands are ranked 35 > 17 > 9 > 1, Br > Cl > F > H, and the relative priority numbers Br = 1, Cl = 2, F = 3, and H = 4 are used to determine the clockwise or anticlockwise sense

AIC40635L